Immunocytochemical study of estrogen receptor activation factor (E-RAF) and the proteins that interact with nuclear estrogen receptor II (nER II) in epithelial endometrial cells, in the presence and in the absence of estradiol.
نویسندگان
چکیده
The localization and abundance of the estrogen receptor activation factor (E-RAF) and a small nuclear ribonucleoprotein (snRNP) complex containing three proteins, p32, p55 and p60, which interact with the nuclear estrogen receptor II (nER II), have been studied in rat endometrial epithelial cells by means of immunofluorescence and high resolution quantitative immunocytochemistry. In the cytoplasm E-RAF is associated with the rough endoplasmic reticulum. In the nucleus it is mainly localized at the interchromatin space, and surrounding the clumps of compact or semi-condensed chromatin. Quantitative analyses show that the abundance of E-RAF in the nucleus increases after ovariectomy and decreases 3 minutes after estradiol administration. These results are in agreement with the currently available biochemical data. Double immunolocalizations demonstrate that p32, p55, p60 co-localize with other splicing-related protein. High resolution immunolocalization shows that p32, p55, p60 are associated with perichromatin fibrils (co-transcriptional splicing) and with clusters of interchromatin granules (storage of splicing-related molecules). The nuclear abundance of the snRNP complex decreases with ovariectomy, increases within 3 minutes after estradiol administration and remains higher than that in ovariectomized animals for 27 minutes. These results strongly support the previous data on the role of nER-II in the regulation of mRNA transcription and its export from the nucleus to the cytoplasm.
منابع مشابه
Comparative Study of Simultaneously and Interval Injection Estradiol and Tamoxifen on Estrogen Receptor α Expression in the Ca 1 Region of Hippocampal Pyramidal Neurons in Ovariectomized Rat
Purpose: The aim of our study is the assesment of estrogen receptor a expression in pyramidal neurons in rat CA 1hippocampus that has been ovariectomized. By using the estrogen antagonist, Tamoxifen level of expression of estrogen receptor a in these cells. Materials and Methods: To study the effect of 17- b estradiol and tamoxifen on estrogen receptors a, expression in hippocampus rats of Wist...
متن کاملI-1: Effect of High Intratesticular Estrogen on
Background: The presence of estrogen receptor beta and aromatase in the germ cell has highlighted the physiological role of the traditionally female hormone, estrogen, in spermatogenesis. Estrogen receptor alpha knockouts and aromatase knockouts have further accentuated the role of estrogen in germ cell maturation. To delineate effects of high intratesticular estradiol in the seminiferous epith...
متن کاملADENOSINE DEAMINASE ACTIVITY IN ESTROGEN RECEPTOR POSITIVE AND NEGATIVE HUMAN BREAST CANCER CELL LINES
ABSTRACT Background: The aims of this study were to assay the activity of adenosine deaminase (ADA) in estrogen receptor positive (MCF-7) and negative (MDA-MB468) breast cancer cell lines. Methods: MDA-MB468 and MCF-7 breast cancer cell lines were cultured in complete medium, striped serum with and without 0.0 1~-LM diethylstilbestrol (DES), complete medium in the presence and absence of 111M ...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of histochemistry : EJH
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2005